Answer :
To solve the given system of equations using the elimination method, follow the steps below:
The given system of equations is:
[tex]\[
\begin{cases}
5a + 5b = 25 \quad \text{(Equation 1)} \\
-5a + 5b = 35 \quad \text{(Equation 2)}
\end{cases}
\][/tex]
1. Add the two equations to eliminate [tex]\(a\)[/tex]:
[tex]\[
(5a + 5b) + (-5a + 5b) = 25 + 35
\][/tex]
2. Combine like terms:
[tex]\[
5a - 5a + 5b + 5b = 25 + 35
\][/tex]
[tex]\[
0a + 10b = 60
\][/tex]
[tex]\[
10b = 60
\][/tex]
The resulting equation when using elimination on the given system is:
[tex]\[
\boxed{10b = 60}
\][/tex]
The given system of equations is:
[tex]\[
\begin{cases}
5a + 5b = 25 \quad \text{(Equation 1)} \\
-5a + 5b = 35 \quad \text{(Equation 2)}
\end{cases}
\][/tex]
1. Add the two equations to eliminate [tex]\(a\)[/tex]:
[tex]\[
(5a + 5b) + (-5a + 5b) = 25 + 35
\][/tex]
2. Combine like terms:
[tex]\[
5a - 5a + 5b + 5b = 25 + 35
\][/tex]
[tex]\[
0a + 10b = 60
\][/tex]
[tex]\[
10b = 60
\][/tex]
The resulting equation when using elimination on the given system is:
[tex]\[
\boxed{10b = 60}
\][/tex]