Answer :
To simplify the expression
[tex]$$\frac{36x^4 + 12x^8}{12x^4},$$[/tex]
we start by dividing each term in the numerator by the denominator:
1. For the first term:
[tex]$$\frac{36x^4}{12x^4} = \frac{36}{12}\cdot x^{4-4} = 3\cdot x^0 = 3.$$[/tex]
(Note that [tex]$x^0 = 1$[/tex].)
2. For the second term:
[tex]$$\frac{12x^8}{12x^4} = \frac{12}{12}\cdot x^{8-4} = 1\cdot x^4 = x^4.$$[/tex]
Now, adding the two results together gives:
[tex]$$3 + x^4.$$[/tex]
Thus, when [tex]$36x^4+12x^8$[/tex] is divided by [tex]$12x^4$[/tex], the simplified result is
[tex]$$3+x^4.$$[/tex]
[tex]$$\frac{36x^4 + 12x^8}{12x^4},$$[/tex]
we start by dividing each term in the numerator by the denominator:
1. For the first term:
[tex]$$\frac{36x^4}{12x^4} = \frac{36}{12}\cdot x^{4-4} = 3\cdot x^0 = 3.$$[/tex]
(Note that [tex]$x^0 = 1$[/tex].)
2. For the second term:
[tex]$$\frac{12x^8}{12x^4} = \frac{12}{12}\cdot x^{8-4} = 1\cdot x^4 = x^4.$$[/tex]
Now, adding the two results together gives:
[tex]$$3 + x^4.$$[/tex]
Thus, when [tex]$36x^4+12x^8$[/tex] is divided by [tex]$12x^4$[/tex], the simplified result is
[tex]$$3+x^4.$$[/tex]