Answer :
To divide
[tex]$$36x^4 + 12x^8$$[/tex]
by
[tex]$$12x^4,$$[/tex]
we split the expression and divide each term separately.
1. For the first term:
[tex]$$\frac{36x^4}{12x^4} = \frac{36}{12} \cdot \frac{x^4}{x^4} = 3 \cdot 1 = 3.$$[/tex]
2. For the second term:
[tex]$$\frac{12x^8}{12x^4} = \frac{12}{12} \cdot \frac{x^8}{x^4} = 1 \cdot x^{8-4} = x^4.$$[/tex]
3. Combine the two results:
[tex]$$3 + x^4.$$[/tex]
Thus, the final result is
[tex]$$\boxed{3+x^4}.$$[/tex]
[tex]$$36x^4 + 12x^8$$[/tex]
by
[tex]$$12x^4,$$[/tex]
we split the expression and divide each term separately.
1. For the first term:
[tex]$$\frac{36x^4}{12x^4} = \frac{36}{12} \cdot \frac{x^4}{x^4} = 3 \cdot 1 = 3.$$[/tex]
2. For the second term:
[tex]$$\frac{12x^8}{12x^4} = \frac{12}{12} \cdot \frac{x^8}{x^4} = 1 \cdot x^{8-4} = x^4.$$[/tex]
3. Combine the two results:
[tex]$$3 + x^4.$$[/tex]
Thus, the final result is
[tex]$$\boxed{3+x^4}.$$[/tex]