Answer :
To find the volume of each solution that contains 0.301 moles of NaI, we can use the formula:
[tex]\[ \text{Volume} = \frac{\text{Moles}}{\text{Concentration}} \][/tex]
where the volume is in liters, moles is the amount of NaI you need, and concentration is in molarity (M).
Let's go through each part:
a. 0.156 M NaI
1. We need 0.301 moles of NaI.
2. The concentration is 0.156 M.
3. Using the formula, divide the moles by the concentration:
[tex]\[
\text{Volume} = \frac{0.301 \, \text{mol}}{0.156 \, \text{M}} \approx 1.93 \, \text{liters}
\][/tex]
b. 0.994 M NaI
1. We need 0.301 moles of NaI.
2. The concentration is 0.994 M.
3. Using the formula, divide the moles by the concentration:
[tex]\[
\text{Volume} = \frac{0.301 \, \text{mol}}{0.994 \, \text{M}} \approx 0.303 \, \text{liters}
\][/tex]
c. 1.55 M NaI
1. We need 0.301 moles of NaI.
2. The concentration is 1.55 M.
3. Using the formula, divide the moles by the concentration:
[tex]\[
\text{Volume} = \frac{0.301 \, \text{mol}}{1.55 \, \text{M}} \approx 0.194 \, \text{liters}
\][/tex]
Therefore, the volumes required are approximately 1.93 liters for 0.156 M NaI, 0.303 liters for 0.994 M NaI, and 0.194 liters for 1.55 M NaI.
[tex]\[ \text{Volume} = \frac{\text{Moles}}{\text{Concentration}} \][/tex]
where the volume is in liters, moles is the amount of NaI you need, and concentration is in molarity (M).
Let's go through each part:
a. 0.156 M NaI
1. We need 0.301 moles of NaI.
2. The concentration is 0.156 M.
3. Using the formula, divide the moles by the concentration:
[tex]\[
\text{Volume} = \frac{0.301 \, \text{mol}}{0.156 \, \text{M}} \approx 1.93 \, \text{liters}
\][/tex]
b. 0.994 M NaI
1. We need 0.301 moles of NaI.
2. The concentration is 0.994 M.
3. Using the formula, divide the moles by the concentration:
[tex]\[
\text{Volume} = \frac{0.301 \, \text{mol}}{0.994 \, \text{M}} \approx 0.303 \, \text{liters}
\][/tex]
c. 1.55 M NaI
1. We need 0.301 moles of NaI.
2. The concentration is 1.55 M.
3. Using the formula, divide the moles by the concentration:
[tex]\[
\text{Volume} = \frac{0.301 \, \text{mol}}{1.55 \, \text{M}} \approx 0.194 \, \text{liters}
\][/tex]
Therefore, the volumes required are approximately 1.93 liters for 0.156 M NaI, 0.303 liters for 0.994 M NaI, and 0.194 liters for 1.55 M NaI.