What term can you add to [tex]\frac{5}{6} x - 4[/tex] to make it equivalent to [tex]\frac{1}{2} x - 4[/tex]?

A. [tex]-\frac{1}{3} x[/tex]

B. [tex]-\frac{1}{3}[/tex]

C. [tex]\frac{1}{2} x[/tex]

D. [tex]\frac{1}{2}[/tex]

Answer :

To solve this problem, we need to find the term that can be added to [tex]\(\frac{5}{6}x - 4\)[/tex] to make it equivalent to [tex]\(\frac{1}{2}x - 4\)[/tex].

Let's break down the expressions:

1. Start with the expression [tex]\(\frac{5}{6}x - 4\)[/tex].

2. We want this expression to be equivalent to [tex]\(\frac{1}{2}x - 4\)[/tex].

To achieve this, focus on the [tex]\(x\)[/tex] terms in both expressions because the [tex]\( -4\)[/tex] is already equal:

- First expression: [tex]\(\frac{5}{6}x\)[/tex]
- Second expression: [tex]\(\frac{1}{2}x\)[/tex]

Now, subtract [tex]\(\frac{5}{6}x\)[/tex] from [tex]\(\frac{1}{2}x\)[/tex] to find the difference:

[tex]\[
\frac{1}{2}x - \frac{5}{6}x
\][/tex]

To perform the subtraction, we need a common denominator. The least common denominator of 2 and 6 is 6.

Convert [tex]\(\frac{1}{2}\)[/tex] to have a denominator of 6:

[tex]\[
\frac{1}{2} = \frac{3}{6}
\][/tex]

Now subtract:

[tex]\[
\frac{3}{6}x - \frac{5}{6}x = -\frac{2}{6}x
\][/tex]

Simplify [tex]\(-\frac{2}{6}x\)[/tex]:

[tex]\[
-\frac{2}{6}x = -\frac{1}{3}x
\][/tex]

Thus, the term we need to add is [tex]\(-\frac{1}{3}x\)[/tex].

The correct answer is [tex]\(-\frac{1}{3}x\)[/tex].