Answer :
Sure! Let's find the sum of the given polynomials step-by-step.
We have two polynomials to add:
1. [tex]\( 7x^3 - 4x^2 \)[/tex]
2. [tex]\( 2x^3 - 4x^2 \)[/tex]
To find the sum, follow these steps:
1. Identify Like Terms:
- Look for terms in both polynomials that have the same power of [tex]\( x \)[/tex].
- In these polynomials:
- The [tex]\( x^3 \)[/tex] terms are [tex]\( 7x^3 \)[/tex] and [tex]\( 2x^3 \)[/tex].
- The [tex]\( x^2 \)[/tex] terms are [tex]\(-4x^2\)[/tex] and [tex]\(-4x^2\)[/tex].
2. Add the Like Terms:
- Add the coefficients of the [tex]\( x^3 \)[/tex] terms:
[tex]\[
7x^3 + 2x^3 = (7 + 2)x^3 = 9x^3
\][/tex]
- Add the coefficients of the [tex]\( x^2 \)[/tex] terms:
[tex]\[
-4x^2 + (-4x^2) = (-4 - 4)x^2 = -8x^2
\][/tex]
3. Write the Result:
- Combine the sums of the like terms:
- The sum of the polynomials is [tex]\( 9x^3 - 8x^2 \)[/tex].
Thus, the sum of the polynomials [tex]\((7x^3 - 4x^2)\)[/tex] and [tex]\((2x^3 - 4x^2)\)[/tex] is [tex]\(\boxed{9x^3 - 8x^2}\)[/tex].
We have two polynomials to add:
1. [tex]\( 7x^3 - 4x^2 \)[/tex]
2. [tex]\( 2x^3 - 4x^2 \)[/tex]
To find the sum, follow these steps:
1. Identify Like Terms:
- Look for terms in both polynomials that have the same power of [tex]\( x \)[/tex].
- In these polynomials:
- The [tex]\( x^3 \)[/tex] terms are [tex]\( 7x^3 \)[/tex] and [tex]\( 2x^3 \)[/tex].
- The [tex]\( x^2 \)[/tex] terms are [tex]\(-4x^2\)[/tex] and [tex]\(-4x^2\)[/tex].
2. Add the Like Terms:
- Add the coefficients of the [tex]\( x^3 \)[/tex] terms:
[tex]\[
7x^3 + 2x^3 = (7 + 2)x^3 = 9x^3
\][/tex]
- Add the coefficients of the [tex]\( x^2 \)[/tex] terms:
[tex]\[
-4x^2 + (-4x^2) = (-4 - 4)x^2 = -8x^2
\][/tex]
3. Write the Result:
- Combine the sums of the like terms:
- The sum of the polynomials is [tex]\( 9x^3 - 8x^2 \)[/tex].
Thus, the sum of the polynomials [tex]\((7x^3 - 4x^2)\)[/tex] and [tex]\((2x^3 - 4x^2)\)[/tex] is [tex]\(\boxed{9x^3 - 8x^2}\)[/tex].