College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the sum of the polynomials?

[tex]\left(7x^3 - 4x^2\right) + \left(2x^3 - 4x^2\right)[/tex]

A. [tex]5x^3[/tex]

B. [tex]9x^3[/tex]

C. [tex]5x^3 - 8x^2[/tex]

D. [tex]9x^3 - 8x^2[/tex]

Answer :

To find the sum of the given polynomials, we combine like terms from each polynomial individually:

1. Identify like terms:
- The terms with [tex]\( x^3 \)[/tex] are [tex]\( 7x^3 \)[/tex] and [tex]\( 2x^3 \)[/tex].
- The terms with [tex]\( x^2 \)[/tex] are [tex]\(-4x^2\)[/tex] and [tex]\(-4x^2\)[/tex].

2. Add the coefficients of the like terms:
- For the [tex]\( x^3 \)[/tex] terms: Add [tex]\( 7 \)[/tex] and [tex]\( 2 \)[/tex]. This gives [tex]\( 9x^3 \)[/tex].
- For the [tex]\( x^2 \)[/tex] terms: Add [tex]\(-4\)[/tex] and [tex]\(-4\)[/tex]. This results in [tex]\(-8x^2\)[/tex].

3. Combine the results:
- The sum of the polynomials is therefore [tex]\( 9x^3 - 8x^2 \)[/tex].

So, the correct option for the sum of the polynomials [tex]\(\left(7x^3 - 4x^2\right) + \left(2x^3 - 4x^2\right)\)[/tex] is [tex]\( 9x^3 - 8x^2 \)[/tex].