Answer :
Sure! Let's find the sum of the two polynomials step by step:
1. Identify the polynomials and their terms:
- The first polynomial is [tex]\(7x^3 - 4x^2\)[/tex].
- The second polynomial is [tex]\(2x^3 - 4x^2\)[/tex].
2. Add the corresponding terms:
- Start with the [tex]\(x^3\)[/tex] terms:
- [tex]\(7x^3 + 2x^3 = 9x^3\)[/tex].
- Next, add the [tex]\(x^2\)[/tex] terms:
- [tex]\(-4x^2 - 4x^2 = -8x^2\)[/tex].
3. Combine the results:
- After adding the corresponding terms, the resulting polynomial is:
- [tex]\(9x^3 - 8x^2\)[/tex].
Therefore, the sum of the polynomials [tex]\((7x^3 - 4x^2) + (2x^3 - 4x^2)\)[/tex] is [tex]\(9x^3 - 8x^2\)[/tex].
1. Identify the polynomials and their terms:
- The first polynomial is [tex]\(7x^3 - 4x^2\)[/tex].
- The second polynomial is [tex]\(2x^3 - 4x^2\)[/tex].
2. Add the corresponding terms:
- Start with the [tex]\(x^3\)[/tex] terms:
- [tex]\(7x^3 + 2x^3 = 9x^3\)[/tex].
- Next, add the [tex]\(x^2\)[/tex] terms:
- [tex]\(-4x^2 - 4x^2 = -8x^2\)[/tex].
3. Combine the results:
- After adding the corresponding terms, the resulting polynomial is:
- [tex]\(9x^3 - 8x^2\)[/tex].
Therefore, the sum of the polynomials [tex]\((7x^3 - 4x^2) + (2x^3 - 4x^2)\)[/tex] is [tex]\(9x^3 - 8x^2\)[/tex].