College

What is the sum of the polynomials?

[tex]\left(7x^3 - 4x^2\right) + \left(2x^3 - 4x^2\right)[/tex]

A. [tex]5x^3[/tex]
B. [tex]9x^3[/tex]
C. [tex]5x^3 - 8x^2[/tex]
D. [tex]9x^3 - 8x^2[/tex]

Answer :

To find the sum of the polynomials [tex]\((7x^3 - 4x^2) + (2x^3 - 4x^2)\)[/tex], we need to follow these steps:

1. Identify the like terms: Like terms are terms that have the same variables raised to the same power. In this case, we have two sets of like terms: [tex]\(x^3\)[/tex] terms and [tex]\(x^2\)[/tex] terms.

- The [tex]\(x^3\)[/tex] terms are [tex]\(7x^3\)[/tex] and [tex]\(2x^3\)[/tex].
- The [tex]\(x^2\)[/tex] terms are [tex]\(-4x^2\)[/tex] and [tex]\(-4x^2\)[/tex].

2. Add the coefficients of the like terms:
- For the [tex]\(x^3\)[/tex] terms: [tex]\(7 + 2 = 9\)[/tex]. So, [tex]\(7x^3 + 2x^3 = 9x^3\)[/tex].
- For the [tex]\(x^2\)[/tex] terms: [tex]\(-4 + (-4) = -8\)[/tex]. So, [tex]\(-4x^2 + (-4x^2) = -8x^2\)[/tex].

3. Combine the results: The results from step 2 give us the combined polynomial.

Thus, the sum of the polynomials [tex]\((7x^3 - 4x^2) + (2x^3 - 4x^2)\)[/tex] is:
[tex]\[ 9x^3 - 8x^2 \][/tex]

Therefore, the correct answer is:
[tex]\[ 9x^3 - 8x^2 \][/tex]