College

What is the sum of the polynomials?

[tex](7x^3 - 4x^2) + (2x^3 - 4x^2)[/tex]

A. [tex]5x^3[/tex]
B. [tex]9x^3[/tex]
C. [tex]5x^3 - 8x^2[/tex]
D. [tex]9x^3 - 8x^2[/tex]

Answer :

To find the sum of the polynomials [tex]\((7x^3 - 4x^2) + (2x^3 - 4x^2)\)[/tex], let's add them step-by-step:

1. Identify like terms: Look at each polynomial, and notice that they have terms with the same degree, specifically the [tex]\(x^3\)[/tex] terms and the [tex]\(x^2\)[/tex] terms.

2. Add the [tex]\(x^3\)[/tex] terms:
- From the first polynomial, [tex]\(7x^3\)[/tex].
- From the second polynomial, [tex]\(2x^3\)[/tex].
- Sum these terms: [tex]\(7x^3 + 2x^3 = 9x^3\)[/tex].

3. Add the [tex]\(x^2\)[/tex] terms:
- From the first polynomial, [tex]\(-4x^2\)[/tex].
- From the second polynomial, [tex]\(-4x^2\)[/tex].
- Sum these terms: [tex]\(-4x^2 + (-4x^2) = -8x^2\)[/tex].

4. Combine the results:
- The sum of the polynomials combines these results: [tex]\(9x^3 - 8x^2\)[/tex].

Therefore, the sum of the polynomials [tex]\((7x^3 - 4x^2) + (2x^3 - 4x^2)\)[/tex] is [tex]\(9x^3 - 8x^2\)[/tex]. The correct choice from the given options is [tex]\(9x^3 - 8x^2\)[/tex].