College

What is the solution to [tex]|x-2|+3 > 17[/tex]?

A. [tex]x < -12[/tex] or [tex]x > 16[/tex]

B. [tex]x < -14[/tex] or [tex]x > 7[/tex]

C. [tex]-12 < x < 16[/tex]

D. [tex]-14 < x < 7[/tex]

Answer :

We start with the inequality

$$
|x-2| + 3 > 17.
$$

**Step 1. Isolate the absolute value.**

Subtract 3 from both sides:

$$
|x-2| > 17 - 3,
$$

which simplifies to

$$
|x-2| > 14.
$$

**Step 2. Split the absolute value inequality into two cases.**

Since an absolute value inequality of the form

$$
|A| > B
$$

(where $B > 0$) is equivalent to

$$
A > B \quad \text{or} \quad A < -B,
$$

for our inequality the two cases are:

1. $x - 2 > 14$, and
2. $x - 2 < -14$.

**Step 3. Solve both cases.**

1. For $x - 2 > 14$:

Add 2 to both sides:

$$
x > 14 + 2,
$$

so

$$
x > 16.
$$

2. For $x - 2 < -14$:

Add 2 to both sides:

$$
x < -14 + 2,
$$

so

$$
x < -12.
$$

**Step 4. Combine the solutions.**

The inequality holds true when either

$$
x < -12 \quad \text{or} \quad x > 16.
$$

Thus, the solution to the inequality is

$$
\boxed{x < -12 \quad \text{or} \quad x > 16.}
$$