Answer :
We start with the inequality:
[tex]$$
|x-2| + 3 > 17.
$$[/tex]
Step 1. Isolate the absolute value
Subtract 3 from both sides:
[tex]$$
|x-2| > 17 - 3 \quad \Rightarrow \quad |x-2| > 14.
$$[/tex]
Step 2. Solve the absolute value inequality
The inequality [tex]$|x-2| > 14$[/tex] means that the expression inside the absolute value is either greater than 14 or less than -14.
Case 1:
[tex]$$
x-2 > 14 \quad \Rightarrow \quad x > 14+2 \quad \Rightarrow \quad x > 16.
$$[/tex]
Case 2:
[tex]$$
x-2 < -14 \quad \Rightarrow \quad x < -14+2 \quad \Rightarrow \quad x < -12.
$$[/tex]
Step 3. Write the final solution
The solution to the inequality is:
[tex]$$
x < -12 \quad \text{or} \quad x > 16.
$$[/tex]
This corresponds to the answer choice:
[tex]$$
x < -12 \text{ or } x > 16.
$$[/tex]
[tex]$$
|x-2| + 3 > 17.
$$[/tex]
Step 1. Isolate the absolute value
Subtract 3 from both sides:
[tex]$$
|x-2| > 17 - 3 \quad \Rightarrow \quad |x-2| > 14.
$$[/tex]
Step 2. Solve the absolute value inequality
The inequality [tex]$|x-2| > 14$[/tex] means that the expression inside the absolute value is either greater than 14 or less than -14.
Case 1:
[tex]$$
x-2 > 14 \quad \Rightarrow \quad x > 14+2 \quad \Rightarrow \quad x > 16.
$$[/tex]
Case 2:
[tex]$$
x-2 < -14 \quad \Rightarrow \quad x < -14+2 \quad \Rightarrow \quad x < -12.
$$[/tex]
Step 3. Write the final solution
The solution to the inequality is:
[tex]$$
x < -12 \quad \text{or} \quad x > 16.
$$[/tex]
This corresponds to the answer choice:
[tex]$$
x < -12 \text{ or } x > 16.
$$[/tex]