College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the remainder when [tex]3x^3 - 2x^2 + 4x - 3[/tex] is divided by [tex]x^2 + 3x + 3[/tex]?

A. 30
B. [tex]3x - 11[/tex]
C. [tex]28x - 36[/tex]
D. [tex]28x + 30[/tex]

Answer :

To find the remainder when dividing the polynomial [tex]\(3x^3 - 2x^2 + 4x - 3\)[/tex] by [tex]\(x^2 + 3x + 3\)[/tex], we use polynomial long division or synthetic division. Here's a step-by-step solution using polynomial long division:

1. Setup the Division: Write down the dividend [tex]\(3x^3 - 2x^2 + 4x - 3\)[/tex] and the divisor [tex]\(x^2 + 3x + 3\)[/tex].

2. Divide the Leading Terms:
- Divide the leading term of the dividend [tex]\(3x^3\)[/tex] by the leading term of the divisor [tex]\(x^2\)[/tex]. This gives us [tex]\(3x\)[/tex].

3. Multiply and Subtract:
- Multiply [tex]\(3x\)[/tex] by the entire divisor [tex]\((x^2 + 3x + 3)\)[/tex], resulting in [tex]\(3x^3 + 9x^2 + 9x\)[/tex].
- Subtract this from the current dividend:
[tex]\[
(3x^3 - 2x^2 + 4x - 3) - (3x^3 + 9x^2 + 9x) = -11x^2 - 5x - 3
\][/tex]

4. Repeat the Process:
- Take the leading term of the new polynomial [tex]\(-11x^2\)[/tex] and divide by the leading term of the divisor [tex]\(x^2\)[/tex], resulting in [tex]\(-11\)[/tex].
- Multiply [tex]\(-11\)[/tex] by the entire divisor [tex]\((x^2 + 3x + 3)\)[/tex], resulting in [tex]\(-11x^2 - 33x - 33\)[/tex].
- Subtract this from the polynomial:
[tex]\[
(-11x^2 - 5x - 3) - (-11x^2 - 33x - 33) = 28x + 30
\][/tex]

5. Conclusion:
- Since the degree of the resulting polynomial [tex]\(28x + 30\)[/tex] is less than the degree of the divisor [tex]\(x^2 + 3x + 3\)[/tex], this is the remainder of the division.

Therefore, the remainder when [tex]\(3x^3 - 2x^2 + 4x - 3\)[/tex] is divided by [tex]\(x^2 + 3x + 3\)[/tex] is [tex]\(\boxed{28x + 30}\)[/tex].