Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the remainder in the synthetic division problem below?

[tex]
\[
\begin{array}{c|cccc}
-2 & 1 & 2 & -3 & 1 \\
\end{array}
\]
[/tex]

A. 9
B. 7
C. 11
D. 13

Answer :

We want to find the remainder when the polynomial
[tex]$$
P(x) = x^3 + 2x^2 - 3x + 1
$$[/tex]
is divided by [tex]$(x + 2)$[/tex]. Since the divisor is written as [tex]$x - r$[/tex], we have [tex]$r = -2$[/tex].

We perform synthetic division using the coefficients of [tex]$P(x)$[/tex]:
[tex]$$
1,\quad 2,\quad -3,\quad 1.
$$[/tex]

The steps are as follows:

1. Write the number [tex]$-2$[/tex] (our [tex]$r$[/tex] value) to the left and list the coefficients:
[tex]$$
\begin{array}{cccc}
-2 & \vline & 1 & 2 & -3 & 1 \\
\end{array}
$$[/tex]

2. Bring down the first coefficient ([tex]$1$[/tex]) directly:
[tex]$$
b_0 = 1.
$$[/tex]

3. Multiply [tex]$b_0$[/tex] by [tex]$-2$[/tex]:
[tex]$$
1 \times (-2) = -2.
$$[/tex]
Add this result to the next coefficient ([tex]$2$[/tex]):
[tex]$$
2 + (-2) = 0.
$$[/tex]
So,
[tex]$$
b_1 = 0.
$$[/tex]

4. Multiply [tex]$b_1$[/tex] by [tex]$-2$[/tex]:
[tex]$$
0 \times (-2) = 0.
$$[/tex]
Add this to the next coefficient ([tex]$-3$[/tex]):
[tex]$$
-3 + 0 = -3.
$$[/tex]
Thus,
[tex]$$
b_2 = -3.
$$[/tex]

5. Multiply [tex]$b_2$[/tex] by [tex]$-2$[/tex]:
[tex]$$
(-3) \times (-2) = 6.
$$[/tex]
Add this last product to the final coefficient ([tex]$1$[/tex]):
[tex]$$
1 + 6 = 7.
$$[/tex]
The resulting number is the remainder:
[tex]$$
\text{Remainder} = 7.
$$[/tex]

Thus, the remainder of the synthetic division is [tex]$\boxed{7}$[/tex].