High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product?

[tex]\left(7x^2\right)\left(2x^3+5\right)\left(x^2-4x-9\right)[/tex]

A. [tex]14x^5-x^4-46x^3-58x^2-20x-45[/tex]

B. [tex]14x^6-56x^5-91x^4-140x^3-315x^2[/tex]

C. [tex]14x^7-56x^6-126x^5+35x^4-140x^3-315x^2[/tex]

D. [tex]14x^{12}-182x^6+35x^4-455x^2[/tex]

Answer :

We start with the expression

[tex]$$
(7x^2)(2x^3 + 5)(x^2 - 4x - 9).
$$[/tex]

Step 1: Multiply the first two factors.

Multiply [tex]\(7x^2\)[/tex] by each term in [tex]\(2x^3 + 5\)[/tex]:

[tex]\[
7x^2 \cdot 2x^3 = 14x^5, \quad 7x^2 \cdot 5 = 35x^2.
\][/tex]

So, the product of the first two factors is

[tex]$$
14x^5 + 35x^2.
$$[/tex]

Step 2: Multiply the resulting expression by the third factor.

Now multiply

[tex]$$
(14x^5 + 35x^2) \cdot (x^2 - 4x - 9)
$$[/tex]

by distributing each term in the first polynomial to every term in the second polynomial:

- Multiply [tex]\(14x^5\)[/tex] by each term:
[tex]\[
14x^5 \cdot x^2 = 14x^7,
\][/tex]
[tex]\[
14x^5 \cdot (-4x) = -56x^6,
\][/tex]
[tex]\[
14x^5 \cdot (-9) = -126x^5.
\][/tex]

- Multiply [tex]\(35x^2\)[/tex] by each term:
[tex]\[
35x^2 \cdot x^2 = 35x^4,
\][/tex]
[tex]\[
35x^2 \cdot (-4x) = -140x^3,
\][/tex]
[tex]\[
35x^2 \cdot (-9) = -315x^2.
\][/tex]

Step 3: Combine all the terms.

Putting all of these products together, we have

[tex]$$
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2.
$$[/tex]

Thus, the fully expanded product is

[tex]$$
\boxed{14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2}.
$$[/tex]