College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product?

[tex]\left(7x^2\right)\left(2x^3+5\right)\left(x^2-4x-9\right)[/tex]

A. [tex]14x^5-x^4-46x^3-58x^2-20x-45[/tex]

B. [tex]14x^6-56x^5-91x^4-140x^3-315x^2[/tex]

C. [tex]14x^7-56x^6-126x^5+85x^4-140x^3-315x^2[/tex]

D. [tex]14x^{12}-182x^6+35x^4-455x^2[/tex]

Answer :

To find the product of the polynomials [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex], we will follow a step-by-step approach:

1. Distribute the first polynomial: Start by expanding [tex]\(7x^2\)[/tex] with the second polynomial [tex]\((2x^3 + 5)\)[/tex].

[tex]\[
(7x^2)(2x^3 + 5) = 7x^2 \cdot 2x^3 + 7x^2 \cdot 5 = 14x^5 + 35x^2
\][/tex]

2. Multiply the result with the third polynomial: Distribute every term from the expanded result above with each term in [tex]\((x^2 - 4x - 9)\)[/tex].

[tex]\[
(14x^5 + 35x^2)(x^2 - 4x - 9)
\][/tex]

3. Expand each product:

For [tex]\(14x^5\)[/tex]:
[tex]\[
14x^5 \cdot x^2 = 14x^7
\][/tex]
[tex]\[
14x^5 \cdot (-4x) = -56x^6
\][/tex]
[tex]\[
14x^5 \cdot (-9) = -126x^5
\][/tex]

For [tex]\(35x^2\)[/tex]:
[tex]\[
35x^2 \cdot x^2 = 35x^4
\][/tex]
[tex]\[
35x^2 \cdot (-4x) = -140x^3
\][/tex]
[tex]\[
35x^2 \cdot (-9) = -315x^2
\][/tex]

4. Combine all terms:

Now, put together all the results from above expansions:
[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]

This simplified expression looks exactly like the third choice in the given options:

[tex]\[ \boxed{3: \, 14x^7 - 56x^6 - 126x^5 + 85x^4 - 140x^3 - 315x^2} \][/tex]

Thus, the answer to the problem is the third option.