Answer :
To find the product of the expression [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex], we need to multiply the three polynomials together. Here is a step-by-step breakdown of how we can do this:
1. Multiply the first two expressions:
[tex]\[
(7x^2)(2x^3 + 5)
\][/tex]
Distribute [tex]\(7x^2\)[/tex] over each term in the second polynomial:
[tex]\[
= 7x^2 \cdot 2x^3 + 7x^2 \cdot 5
\][/tex]
Simplify each term:
[tex]\[
= 14x^5 + 35x^2
\][/tex]
2. Multiply the result by the third expression:
[tex]\[
(14x^5 + 35x^2)(x^2 - 4x - 9)
\][/tex]
3. Distribute [tex]\(14x^5\)[/tex] over the third polynomial:
[tex]\[
14x^5 \cdot x^2 = 14x^7
\][/tex]
[tex]\[
14x^5 \cdot (-4x) = -56x^6
\][/tex]
[tex]\[
14x^5 \cdot (-9) = -126x^5
\][/tex]
4. Distribute [tex]\(35x^2\)[/tex] over the third polynomial:
[tex]\[
35x^2 \cdot x^2 = 35x^4
\][/tex]
[tex]\[
35x^2 \cdot (-4x) = -140x^3
\][/tex]
[tex]\[
35x^2 \cdot (-9) = -315x^2
\][/tex]
5. Combine all the terms:
[tex]\[
= 14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]
By carefully multiplying each of the terms, we arrive at the final expanded product of the polynomial. The complete solution in the expanded form is:
[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]
1. Multiply the first two expressions:
[tex]\[
(7x^2)(2x^3 + 5)
\][/tex]
Distribute [tex]\(7x^2\)[/tex] over each term in the second polynomial:
[tex]\[
= 7x^2 \cdot 2x^3 + 7x^2 \cdot 5
\][/tex]
Simplify each term:
[tex]\[
= 14x^5 + 35x^2
\][/tex]
2. Multiply the result by the third expression:
[tex]\[
(14x^5 + 35x^2)(x^2 - 4x - 9)
\][/tex]
3. Distribute [tex]\(14x^5\)[/tex] over the third polynomial:
[tex]\[
14x^5 \cdot x^2 = 14x^7
\][/tex]
[tex]\[
14x^5 \cdot (-4x) = -56x^6
\][/tex]
[tex]\[
14x^5 \cdot (-9) = -126x^5
\][/tex]
4. Distribute [tex]\(35x^2\)[/tex] over the third polynomial:
[tex]\[
35x^2 \cdot x^2 = 35x^4
\][/tex]
[tex]\[
35x^2 \cdot (-4x) = -140x^3
\][/tex]
[tex]\[
35x^2 \cdot (-9) = -315x^2
\][/tex]
5. Combine all the terms:
[tex]\[
= 14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]
By carefully multiplying each of the terms, we arrive at the final expanded product of the polynomial. The complete solution in the expanded form is:
[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]