College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product?

[tex]\[\left(7x^2\right)\left(2x^3+5\right)\left(x^2-4x-9\right)\][/tex]

A. [tex]\(14x^5-x^4-46x^3-58x^2-20x-45\)[/tex]

B. [tex]\(14x^6-56x^5-91x^4-140x^3-315x^2\)[/tex]

C. [tex]\(14x^7-56x^6-126x^5+35x^4-140x^3-315x^2\)[/tex]

D. [tex]\(14x^{12}-182x^6+35x^4-455x^2\)[/tex]

Answer :

To find the product of the expression [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex], we will multiply these terms together step-by-step.

1. Multiply the first two expressions: [tex]\((7x^2)\)[/tex] and [tex]\((2x^3 + 5)\)[/tex].
- Distribute [tex]\(7x^2\)[/tex] to each term in the second expression:
- [tex]\(7x^2 \times 2x^3 = 14x^5\)[/tex]
- [tex]\(7x^2 \times 5 = 35x^2\)[/tex]
- This gives us: [tex]\(14x^5 + 35x^2\)[/tex].

2. Multiply the result with the third expression: [tex]\((14x^5 + 35x^2)\)[/tex] and [tex]\((x^2 - 4x - 9)\)[/tex].
- Distribute each term in [tex]\((14x^5 + 35x^2)\)[/tex] across [tex]\((x^2 - 4x - 9)\)[/tex]:
- [tex]\(14x^5 \times x^2 = 14x^7\)[/tex]
- [tex]\(14x^5 \times (-4x) = -56x^6\)[/tex]
- [tex]\(14x^5 \times (-9) = -126x^5\)[/tex]
- [tex]\(35x^2 \times x^2 = 35x^4\)[/tex]
- [tex]\(35x^2 \times (-4x) = -140x^3\)[/tex]
- [tex]\(35x^2 \times (-9) = -315x^2\)[/tex]

3. Combine all the terms: Collect all the resulting terms from the distribution:
- [tex]\(14x^7 + (-56x^6) + (-126x^5) + 35x^4 + (-140x^3) + (-315x^2)\)[/tex]

Therefore, the expanded and simplified product of the expression is:
[tex]\[ 14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2 \][/tex]

This is the final expression in expanded form.