College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product?

[tex]\left(7x^2\right)\left(2x^3+5\right)\left(x^2-4x-9\right)[/tex]

A. [tex]14x^{12}-182x^6+35x^4-455x^2[/tex]

B. [tex]14x^7-56x^8-126x^5+35x^4-140x^3-315x^2[/tex]

C. [tex]14x^5-x^4-46x^3-58x^2-20x-45[/tex]

D. [tex]14x^6-56x^5-91x^4-140x^3-315x^2[/tex]

Answer :

To find the product of the expression [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex], follow these steps:

1. Multiply [tex]\(7x^2\)[/tex] with [tex]\((2x^3 + 5)\)[/tex]:

- Start with each term in the expression [tex]\( (2x^3 + 5) \)[/tex]:
- Multiply [tex]\(7x^2\)[/tex] by [tex]\(2x^3\)[/tex]: [tex]\(7x^2 \cdot 2x^3 = 14x^5\)[/tex]
- Multiply [tex]\(7x^2\)[/tex] by [tex]\(5\)[/tex]: [tex]\(7x^2 \cdot 5 = 35x^2\)[/tex]

- So, the result of the multiplication is: [tex]\(14x^5 + 35x^2\)[/tex].

2. Multiply the result by [tex]\((x^2 - 4x - 9)\)[/tex]:

- Distribute each term from [tex]\(14x^5 + 35x^2\)[/tex] across the terms in [tex]\((x^2 - 4x - 9)\)[/tex]:

- For [tex]\(14x^5\)[/tex]:
- [tex]\(14x^5 \cdot x^2 = 14x^7\)[/tex]
- [tex]\(14x^5 \cdot -4x = -56x^6\)[/tex]
- [tex]\(14x^5 \cdot -9 = -126x^5\)[/tex]

- For [tex]\(35x^2\)[/tex]:
- [tex]\(35x^2 \cdot x^2 = 35x^4\)[/tex]
- [tex]\(35x^2 \cdot -4x = -140x^3\)[/tex]
- [tex]\(35x^2 \cdot -9 = -315x^2\)[/tex]

3. Combine all these terms:

- The expression from the multiplications is:
[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]

This is the final product of the expression [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex].