College

What is the product?

[tex]\[
\left(-2x - 9y^2\right)(-4x - 3)
\][/tex]

A. [tex]\(-8x^2 - 6x - 36xy^2 - 27y^2\)[/tex]

B. [tex]\(-14x^2 - 36xy^2 + 27y^2\)[/tex]

C. [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

D. [tex]\(14x^2 + 36xy^2 + 27y^2\)[/tex]

Answer :

To find the product of the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex], we use the distributive property, often referred to as the FOIL method when dealing with binomials. Let's break it down step-by-step:

1. First Terms: Multiply the first terms of each binomial:
[tex]\[
(-2x) \times (-4x) = 8x^2
\][/tex]

2. Outer Terms: Multiply the outer terms:
[tex]\[
(-2x) \times (-3) = 6x
\][/tex]

3. Inner Terms: Multiply the inner terms:
[tex]\[
(-9y^2) \times (-4x) = 36xy^2
\][/tex]

4. Last Terms: Multiply the last terms:
[tex]\[
(-9y^2) \times (-3) = 27y^2
\][/tex]

Now, combine all these results to form the final expression:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

This simplified expression represents the product of the given binomials. Therefore, the correct answer is:

[tex]\[ 8x^2 + 6x + 36xy^2 + 27y^2 \][/tex]