College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product?

[tex]\[ \left(-2x - 9y^2\right)(-4x - 3) \][/tex]

A. [tex]\(-8x^2 - 6x - 36xy^2 - 27y^2\)[/tex]

B. [tex]\(-14x^2 - 36xy^2 + 27y^2\)[/tex]

C. [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

D. [tex]\(14x^2 + 36xy^2 + 27y^2\)[/tex]

Answer :

Let's find the product of the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex] by expanding it step by step.

1. Distribute each term in the first parenthesis to each term in the second parenthesis:

- Multiply [tex]\(-2x\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-2x) \times (-4x) = 8x^2
\][/tex]

- Multiply [tex]\(-2x\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-2x) \times (-3) = 6x
\][/tex]

- Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-9y^2) \times (-4x) = 36xy^2
\][/tex]

- Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-9y^2) \times (-3) = 27y^2
\][/tex]

2. Combine all the terms we've found:

[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

So, the expanded form of the expression is [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex].

The correct answer is the option [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex].