College

What is the product?

[tex]\[
(7x^2)(2x^3+5)(x^2-4x-9)
\][/tex]

A. [tex]\(14x^5 - x^4 - 46x^3 - 58x^2 - 20x - 45\)[/tex]

B. [tex]\(14x^6 - 56x^5 - 91x^4 - 140x^3 - 315x^2\)[/tex]

C. [tex]\(14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2\)[/tex]

D. [tex]\(14x^{12} - 182x^6 + 35x^4 - 455x^2\)[/tex]

Answer :

To find the product of the given expression [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex], we'll follow these steps:

1. Multiply the first two terms: [tex]\((7x^2)\)[/tex] and [tex]\((2x^3 + 5)\)[/tex].

- Start by distributing [tex]\(7x^2\)[/tex] into each term of [tex]\((2x^3 + 5)\)[/tex]:
[tex]\[
7x^2 \times 2x^3 = 14x^5
\][/tex]

[tex]\[
7x^2 \times 5 = 35x^2
\][/tex]

So, the product of [tex]\((7x^2)(2x^3 + 5)\)[/tex] is:
[tex]\[
14x^5 + 35x^2
\][/tex]

2. Multiply the result from step 1 by the third term: [tex]\((x^2 - 4x - 9)\)[/tex].

Now, distribute each term from [tex]\(14x^5 + 35x^2\)[/tex] into [tex]\(x^2 - 4x - 9\)[/tex]:

- Multiply [tex]\(14x^5\)[/tex] with each term in [tex]\((x^2 - 4x - 9)\)[/tex]:
[tex]\[
14x^5 \times x^2 = 14x^7
\][/tex]

[tex]\[
14x^5 \times (-4x) = -56x^6
\][/tex]

[tex]\[
14x^5 \times (-9) = -126x^5
\][/tex]

- Multiply [tex]\(35x^2\)[/tex] with each term in [tex]\((x^2 - 4x - 9)\)[/tex]:
[tex]\[
35x^2 \times x^2 = 35x^4
\][/tex]

[tex]\[
35x^2 \times (-4x) = -140x^3
\][/tex]

[tex]\[
35x^2 \times (-9) = -315x^2
\][/tex]

3. Combine all the terms:

Combine the results from the multiplication:
[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]

This results in the final product:
[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]

And that's the product of the given expression.