College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product?

[tex] (7x^2)(2x^3 + 5)(x^2 - 4x - 9) [/tex]

A. [tex] 14x^5 - x^4 - 46x^3 - 58x^2 - 20x - 45 [/tex]

B. [tex] 14x^6 - 56x^5 - 91x^4 - 140x^3 - 315x^2 [/tex]

C. [tex] 14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2 [/tex]

D. [tex] 14x^{12} - 182x^6 + 35x^4 - 455x^2 [/tex]

Answer :

To find the product of the given expression [tex]\(\left(7 x^2\right)\left(2 x^3+5\right)\left(x^2-4 x-9\right)\)[/tex], we can follow these steps:

1. Identify the expressions: The expression is composed of three parts:
- [tex]\(7x^2\)[/tex]
- [tex]\(2x^3 + 5\)[/tex]
- [tex]\(x^2 - 4x - 9\)[/tex]

2. Multiply the first two expressions:
- Multiply [tex]\(7x^2\)[/tex] by each term in [tex]\(2x^3 + 5\)[/tex]:
- [tex]\(7x^2 \cdot 2x^3 = 14x^5\)[/tex]
- [tex]\(7x^2 \cdot 5 = 35x^2\)[/tex]

So, the result of multiplying the first two expressions is:
[tex]\[14x^5 + 35x^2\][/tex]

3. Multiply the result with the third expression [tex]\((x^2 - 4x - 9)\)[/tex]:
- Distribute each term from the expression [tex]\(14x^5 + 35x^2\)[/tex] with each term in the polynomial [tex]\(x^2 - 4x - 9\)[/tex]:

- Multiply through by [tex]\(14x^5\)[/tex]:
- [tex]\(14x^5 \cdot x^2 = 14x^7\)[/tex]
- [tex]\(14x^5 \cdot (-4x) = -56x^6\)[/tex]
- [tex]\(14x^5 \cdot (-9) = -126x^5\)[/tex]

- Multiply through by [tex]\(35x^2\)[/tex]:
- [tex]\(35x^2 \cdot x^2 = 35x^4\)[/tex]
- [tex]\(35x^2 \cdot (-4x) = -140x^3\)[/tex]
- [tex]\(35x^2 \cdot (-9) = -315x^2\)[/tex]

4. Combine like terms:
- Group the terms with the same power of [tex]\(x\)[/tex]:
[tex]\[
\begin{align*}
& 14x^7 \\
& - 56x^6 \\
& - 126x^5 \\
& + 35x^4 \\
& - 140x^3 \\
& - 315x^2 \\
\end{align*}
\][/tex]

Thus, the final expanded form of the product is:
[tex]\[ 14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2 \][/tex]

This is the result of multiplying and expanding the given expression.