College

What is the product?

[tex]
(4x)\left(-3x^8\right)\left(-7x^3\right)
[/tex]

A. [tex]-84x^{12}[/tex]

B. [tex]-84x^{24}[/tex]

C. [tex]84x^{12}[/tex]

D. [tex]84x^{24}[/tex]

Answer :

Let's find the product of the expression [tex]\((4x)(-3x^8)(-7x^3)\)[/tex].

1. Multiply the Coefficients:

First, we need to multiply the coefficients of the terms together:
[tex]\[
4 \times (-3) \times (-7) = 4 \times 21 = 84
\][/tex]
Multiplying [tex]\(-3\)[/tex] and [tex]\(-7\)[/tex] gives us a positive 21, and then multiplying by 4 results in 84.

2. Multiply the Variables:

Next, we need to multiply the variables with their exponents. When multiplying variables with the same base, we add the exponents. The expression is:
[tex]\[
x^1 \times x^8 \times x^3
\][/tex]
Add the exponents:
[tex]\[
1 + 8 + 3 = 12
\][/tex]

3. Combine the Parts:

Now, combine the calculated coefficient and the exponent:
[tex]\[
84x^{12}
\][/tex]

Therefore, the product of [tex]\((4x)(-3x^8)(-7x^3)\)[/tex] is [tex]\(84x^{12}\)[/tex].

So, the correct answer is:
[tex]\[ 84x^{12} \][/tex]