College

What is the product?

[tex]\[
(-2x - 9y^2)(-4x - 3)
\][/tex]

A. [tex]\(-8x^2 - 6x - 36xy^2 - 27y^2\)[/tex]

B. [tex]\(-14x^2 - 36xy^2 + 27y^2\)[/tex]

C. [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

D. [tex]\(14x^2 + 36xy^2 + 27y^2\)[/tex]

Answer :

To find the product of the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex], we need to apply the distributive property, also known as the FOIL method for binomials, which stands for First, Outer, Inner, Last. Here's how it works step-by-step:

1. First: Multiply the first terms of each binomial:
[tex]\[
(-2x) \times (-4x) = 8x^2
\][/tex]

2. Outer: Multiply the outer terms:
[tex]\[
(-2x) \times (-3) = 6x
\][/tex]

3. Inner: Multiply the inner terms:
[tex]\[
(-9y^2) \times (-4x) = 36xy^2
\][/tex]

4. Last: Multiply the last terms of each binomial:
[tex]\[
(-9y^2) \times (-3) = 27y^2
\][/tex]

Now, combine all these results together:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

Therefore, the product of [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex] is:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

This result matches one of the given answer choices:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]