High School

What is the product of the polynomials below?



[tex]\left(5x^2 - x - 3\right)(2x + 6)[/tex]



A. [tex]10x^3 + 28x^2 - 12x - 18[/tex]

B. [tex]10x^3 + 28x^2 - 12x - 3[/tex]

C. [tex]10x^3 + 28x^2 + 12x + 3[/tex]

D. [tex]10x^3 + 28x^2 + 12x + 18[/tex]

Answer :

To multiply the polynomials
$$ (5x^2 - x - 3)(2x + 6), $$
we use the distributive property (also known as the FOIL method for binomials, extended here for a trinomial and a binomial).

1. Multiply each term in the first polynomial by each term in the second polynomial:

- Multiply $5x^2$ by each term of $2x + 6$:
$$ 5x^2 \cdot 2x = 10x^3, $$
$$ 5x^2 \cdot 6 = 30x^2. $$

- Multiply $-x$ by each term of $2x + 6$:
$$ -x \cdot 2x = -2x^2, $$
$$ -x \cdot 6 = -6x. $$

- Multiply $-3$ by each term of $2x + 6$:
$$ -3 \cdot 2x = -6x, $$
$$ -3 \cdot 6 = -18. $$

2. Now, combine the like terms:

- The cubic term:
$$ 10x^3. $$

- The quadratic terms:
$$ 30x^2 - 2x^2 = 28x^2. $$

- The linear terms:
$$ -6x - 6x = -12x. $$

- The constant term:
$$ -18. $$

3. Putting it all together, the product is:
$$ 10x^3 + 28x^2 - 12x - 18. $$

Thus, the final answer is:

$$ 10x^3 + 28x^2 - 12x - 18, $$

which corresponds to option A.