Answer :
We start with the product:
[tex]$$
(-2x - 9y^2)(-4x - 3)
$$[/tex]
To find the result, we use the distributive property (also known as the FOIL method):
1. Multiply [tex]$-2x$[/tex] by [tex]$-4x$[/tex]:
[tex]$$
(-2x)(-4x) = 8x^2
$$[/tex]
2. Multiply [tex]$-2x$[/tex] by [tex]$-3$[/tex]:
[tex]$$
(-2x)(-3) = 6x
$$[/tex]
3. Multiply [tex]$-9y^2$[/tex] by [tex]$-4x$[/tex]:
[tex]$$
(-9y^2)(-4x) = 36xy^2
$$[/tex]
4. Multiply [tex]$-9y^2$[/tex] by [tex]$-3$[/tex]:
[tex]$$
(-9y^2)(-3) = 27y^2
$$[/tex]
Finally, combine all these products:
[tex]$$
8x^2 + 6x + 36xy^2 + 27y^2.
$$[/tex]
This is the expanded and simplified product.
[tex]$$
(-2x - 9y^2)(-4x - 3)
$$[/tex]
To find the result, we use the distributive property (also known as the FOIL method):
1. Multiply [tex]$-2x$[/tex] by [tex]$-4x$[/tex]:
[tex]$$
(-2x)(-4x) = 8x^2
$$[/tex]
2. Multiply [tex]$-2x$[/tex] by [tex]$-3$[/tex]:
[tex]$$
(-2x)(-3) = 6x
$$[/tex]
3. Multiply [tex]$-9y^2$[/tex] by [tex]$-4x$[/tex]:
[tex]$$
(-9y^2)(-4x) = 36xy^2
$$[/tex]
4. Multiply [tex]$-9y^2$[/tex] by [tex]$-3$[/tex]:
[tex]$$
(-9y^2)(-3) = 27y^2
$$[/tex]
Finally, combine all these products:
[tex]$$
8x^2 + 6x + 36xy^2 + 27y^2.
$$[/tex]
This is the expanded and simplified product.