College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product of the following expression?

[tex](-2x - 9y^2)(-4x - 3)[/tex]

A. [tex]-8x^2 - 6x - 36xy^2 - 27y^2[/tex]

B. [tex]-14x^2 - 36xy^2 + 27y^2[/tex]

C. [tex]8x^2 + 6x + 36xy^2 + 27y^2[/tex]

D. [tex]14x^2 + 36xy^2 + 27y^2[/tex]

Answer :

To find the product of [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex], we need to use the distributive property, which allows us to multiply each term in the first parentheses by each term in the second parentheses. Let's do this step-by-step:

1. Distribute [tex]\(-2x\)[/tex] to each term in [tex]\((-4x - 3)\)[/tex]:

- Multiply [tex]\(-2x\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-2x) \times (-4x) = 8x^2
\][/tex]

- Multiply [tex]\(-2x\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-2x) \times (-3) = 6x
\][/tex]

2. Distribute [tex]\(-9y^2\)[/tex] to each term in [tex]\((-4x - 3)\)[/tex]:

- Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-9y^2) \times (-4x) = 36xy^2
\][/tex]

- Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-9y^2) \times (-3) = 27y^2
\][/tex]

3. Add all the results together:

Combine all the terms from the previous steps:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

So, the product of [tex]\((-2x - 9y^2)\)[/tex] and [tex]\((-4x - 3)\)[/tex] is:
[tex]\[
8x^2 + 36xy^2 + 6x + 27y^2
\][/tex]

This matches the option [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex], which is the correct answer.