College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product of the expression?

[tex]\left(7x^2\right)\left(2x^3+5\right)\left(x^2-4x-9\right)[/tex]

A. [tex]14x^5-x^4-46x^3-58x^2-20x-45[/tex]

B. [tex]14x^6-56x^5-91x^4-140x^3-315x^2[/tex]

C. [tex]14x^7-56x^6-126x^5+35x^4-140x^3-315x^2[/tex]

D. [tex]14x^{12}-182x^6+35x^4-455x^2[/tex]

Answer :

To find the product of the expressions [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex], let's break down the multiplication step-by-step:

### Step 1: Multiply the first two expressions
First, consider the multiplication of the expression [tex]\(7x^2\)[/tex] with [tex]\((2x^3 + 5)\)[/tex].

- Distribute [tex]\(7x^2\)[/tex] across each term in the parentheses:
- [tex]\(7x^2 \cdot 2x^3 = 14x^5\)[/tex]
- [tex]\(7x^2 \cdot 5 = 35x^2\)[/tex]

So, the result of this multiplication is:
[tex]\[14x^5 + 35x^2\][/tex]

### Step 2: Multiply the result with the third expression
Now, we need to multiply the resulting expression [tex]\( (14x^5 + 35x^2) \)[/tex] by the third expression [tex]\((x^2 - 4x - 9)\)[/tex].

Distribute each term in [tex]\( (14x^5 + 35x^2) \)[/tex] across each term in [tex]\((x^2 - 4x - 9)\)[/tex]:

1. Multiply [tex]\(14x^5\)[/tex] by each term in [tex]\((x^2 - 4x - 9)\)[/tex]:
- [tex]\(14x^5 \cdot x^2 = 14x^7\)[/tex]
- [tex]\(14x^5 \cdot (-4x) = -56x^6\)[/tex]
- [tex]\(14x^5 \cdot (-9) = -126x^5\)[/tex]

2. Multiply [tex]\(35x^2\)[/tex] by each term in [tex]\((x^2 - 4x - 9)\)[/tex]:
- [tex]\(35x^2 \cdot x^2 = 35x^4\)[/tex]
- [tex]\(35x^2 \cdot (-4x) = -140x^3\)[/tex]
- [tex]\(35x^2 \cdot (-9) = -315x^2\)[/tex]

Combine all the terms from the multiplication:
[tex]\[ 14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2 \][/tex]

This is the product of the three expressions.