College

What is the product of the expression?

[tex]\left(-2x-9y^2\right)(-4x-3)[/tex]

A. [tex]-8x^2 - 6x - 36xy^2 - 27y^2[/tex]

B. [tex]-14x^2 - 36xy^2 + 27y^2[/tex]

C. [tex]8x^2 + 6x + 36xy^2 + 27y^2[/tex]

D. [tex]14x^2 + 36xy^2 + 27y^2[/tex]

Answer :

Sure! Let's solve the problem step-by-step using the distributive property.

Given the expression to expand:
[tex]\[
(-2x - 9y^2)(-4x - 3)
\][/tex]

To expand this, we apply the distributive property by multiplying each term in the first parentheses by each term in the second parentheses.

1. Multiply [tex]\(-2x\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-2x) \cdot (-4x) = 8x^2
\][/tex]

2. Multiply [tex]\(-2x\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-2x) \cdot (-3) = 6x
\][/tex]

3. Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-9y^2) \cdot (-4x) = 36xy^2
\][/tex]

4. Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-9y^2) \cdot (-3) = 27y^2
\][/tex]

Now, combine all these results to find the product:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

Therefore, the expanded expression is:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

So the correct answer is option c:
[tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]