Answer :
Sure! Let's find the product of the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex].
1. Distribute the terms:
- Multiply each term of the first binomial by each term of the second binomial.
2. Calculate each multiplication:
- [tex]\((-2x) \times (-4x) = 8x^2\)[/tex]
- [tex]\((-2x) \times (-3) = 6x\)[/tex]
- [tex]\((-9y^2) \times (-4x) = 36xy^2\)[/tex]
- [tex]\((-9y^2) \times (-3) = 27y^2\)[/tex]
3. Combine the results:
- Add these four results together: [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]
So, the product of the expression is:
[tex]\[ 8x^2 + 6x + 36xy^2 + 27y^2 \][/tex]
That's it! We've multiplied out the expression correctly and obtained the expanded form.
1. Distribute the terms:
- Multiply each term of the first binomial by each term of the second binomial.
2. Calculate each multiplication:
- [tex]\((-2x) \times (-4x) = 8x^2\)[/tex]
- [tex]\((-2x) \times (-3) = 6x\)[/tex]
- [tex]\((-9y^2) \times (-4x) = 36xy^2\)[/tex]
- [tex]\((-9y^2) \times (-3) = 27y^2\)[/tex]
3. Combine the results:
- Add these four results together: [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]
So, the product of the expression is:
[tex]\[ 8x^2 + 6x + 36xy^2 + 27y^2 \][/tex]
That's it! We've multiplied out the expression correctly and obtained the expanded form.