What is the product of the expression?

[tex]\left(-2x - 9y^2\right)(-4x - 3)[/tex]

A. [tex]-8x^2 - 6x - 36xy^2 - 27y^2[/tex]

B. [tex]-14x^2 - 36xy^2 + 27y^2[/tex]

C. [tex]8x^2 + 6x + 36xy^2 + 27y^2[/tex]

D. [tex]14x^2 + 36xy^2 + 27y^2[/tex]

Answer :

Sure! Let's find the product of the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex].

1. Distribute the terms:
- Multiply each term of the first binomial by each term of the second binomial.

2. Calculate each multiplication:
- [tex]\((-2x) \times (-4x) = 8x^2\)[/tex]
- [tex]\((-2x) \times (-3) = 6x\)[/tex]
- [tex]\((-9y^2) \times (-4x) = 36xy^2\)[/tex]
- [tex]\((-9y^2) \times (-3) = 27y^2\)[/tex]

3. Combine the results:
- Add these four results together: [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

So, the product of the expression is:

[tex]\[ 8x^2 + 6x + 36xy^2 + 27y^2 \][/tex]

That's it! We've multiplied out the expression correctly and obtained the expanded form.