College

What is the product of the expression?

[tex]\left(-2x - 9y^2\right)(-4x - 3)[/tex]

A. [tex]-8x^2 - 6x - 36xy^2 - 27y^2[/tex]
B. [tex]-14x^2 - 36xy^2 + 27y^2[/tex]
C. [tex]8x^2 + 6x + 36xy^2 + 27y^2[/tex]
D. [tex]14x^2 + 36xy^2 + 27y^2[/tex]

Answer :

To solve the problem of finding the product of [tex]\((-2x - 9y^2)\)[/tex] and [tex]\((-4x - 3)\)[/tex], we need to use the distributive property, which involves multiplying each term in the first expression by each term in the second expression. Let's go through the steps:

1. Distribute [tex]\((-2x)\)[/tex]:

- Multiply [tex]\((-2x)\)[/tex] by [tex]\((-4x)\)[/tex]:
[tex]\[
(-2x) \cdot (-4x) = 8x^2
\][/tex]

- Multiply [tex]\((-2x)\)[/tex] by [tex]\((-3)\)[/tex]:
[tex]\[
(-2x) \cdot (-3) = 6x
\][/tex]

2. Distribute [tex]\((-9y^2)\)[/tex]:

- Multiply [tex]\((-9y^2)\)[/tex] by [tex]\((-4x)\)[/tex]:
[tex]\[
(-9y^2) \cdot (-4x) = 36xy^2
\][/tex]

- Multiply [tex]\((-9y^2)\)[/tex] by [tex]\((-3)\)[/tex]:
[tex]\[
(-9y^2) \cdot (-3) = 27y^2
\][/tex]

3. Combine all the results:

Now, we add up all of the terms we calculated:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

Therefore, the product of [tex]\((-2x - 9y^2)\)[/tex] and [tex]\((-4x - 3)\)[/tex] is:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

This matches with one of the given answer choices:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]