Answer :
To find the product of
[tex]$$(-2x - 9y^2)(-4x - 3),$$[/tex]
we can multiply each term in the first parenthesis by each term in the second parenthesis.
1. Multiply the first terms:
[tex]$$(-2x) \cdot (-4x) = 8x^2.$$[/tex]
2. Multiply the outer terms:
[tex]$$(-2x) \cdot (-3) = 6x.$$[/tex]
3. Multiply the inner terms:
[tex]$$(-9y^2) \cdot (-4x) = 36xy^2.$$[/tex]
4. Multiply the last terms:
[tex]$$(-9y^2) \cdot (-3) = 27y^2.$$[/tex]
Now, combine all the obtained terms:
[tex]$$8x^2 + 6x + 36xy^2 + 27y^2.$$[/tex]
Thus, the product is
[tex]$$8x^2 + 6x + 36xy^2 + 27y^2,$$[/tex]
which corresponds to option 3.
[tex]$$(-2x - 9y^2)(-4x - 3),$$[/tex]
we can multiply each term in the first parenthesis by each term in the second parenthesis.
1. Multiply the first terms:
[tex]$$(-2x) \cdot (-4x) = 8x^2.$$[/tex]
2. Multiply the outer terms:
[tex]$$(-2x) \cdot (-3) = 6x.$$[/tex]
3. Multiply the inner terms:
[tex]$$(-9y^2) \cdot (-4x) = 36xy^2.$$[/tex]
4. Multiply the last terms:
[tex]$$(-9y^2) \cdot (-3) = 27y^2.$$[/tex]
Now, combine all the obtained terms:
[tex]$$8x^2 + 6x + 36xy^2 + 27y^2.$$[/tex]
Thus, the product is
[tex]$$8x^2 + 6x + 36xy^2 + 27y^2,$$[/tex]
which corresponds to option 3.