College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product of the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex]?

A. [tex]\(-8x^2 - 6x - 36xy^2 - 27y^2\)[/tex]

B. [tex]\(-14x^2 - 36xy^2 + 27y^2\)[/tex]

C. [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

D. [tex]\(14x^2 + 36xy^2 + 27y^2\)[/tex]

Answer :

To find the product of the expressions [tex]\((-2x - 9y^2)\)[/tex] and [tex]\((-4x - 3)\)[/tex], we need to distribute each term in the first expression by each term in the second expression and then simplify the result.

Let's break it down step by step:

1. Distribute [tex]\(-2x\)[/tex] to both terms in [tex]\((-4x - 3)\)[/tex]:
- Multiply [tex]\(-2x\)[/tex] by [tex]\(-4x\)[/tex]: [tex]\((-2x) \times (-4x) = 8x^2\)[/tex]
- Multiply [tex]\(-2x\)[/tex] by [tex]\(-3\)[/tex]: [tex]\((-2x) \times (-3) = 6x\)[/tex]

2. Distribute [tex]\(-9y^2\)[/tex] to both terms in [tex]\((-4x - 3)\)[/tex]:
- Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-4x\)[/tex]: [tex]\((-9y^2) \times (-4x) = 36xy^2\)[/tex]
- Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-3\)[/tex]: [tex]\((-9y^2) \times (-3) = 27y^2\)[/tex]

3. Combine all the terms we found:
- [tex]\(8x^2\)[/tex] from step 1
- [tex]\(6x\)[/tex] from step 1
- [tex]\(36xy^2\)[/tex] from step 2
- [tex]\(27y^2\)[/tex] from step 2

4. Write down the final expression:
- The expression is [tex]\(8x^2 + 36xy^2 + 6x + 27y^2\)[/tex]

This is the simplified product of [tex]\((-2x - 9y^2)\)[/tex] and [tex]\((-4x - 3)\)[/tex].