College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product of the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex]?

A. [tex]\(-8x^2 - 6x - 36xy^2 - 27y^2\)[/tex]

B. [tex]\(-14x^2 - 36xy^2 + 27y^2\)[/tex]

C. [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

D. [tex]\(14x^2 + 36xy^2 + 27y^2\)[/tex]

Answer :

To find the product of [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex], let's multiply these expressions using the distributive property, also known as the FOIL method when dealing with binomials.

Here's a step-by-step breakdown:

1. Multiply each term in the first binomial by each term in the second binomial:

- First, multiply [tex]\(-2x\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-2x) \cdot (-4x) = 8x^2
\][/tex]

- Next, multiply [tex]\(-2x\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-2x) \cdot (-3) = 6x
\][/tex]

- Then, multiply [tex]\(-9y^2\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-9y^2) \cdot (-4x) = 36xy^2
\][/tex]

- Finally, multiply [tex]\(-9y^2\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-9y^2) \cdot (-3) = 27y^2
\][/tex]

2. Combine all these products:

[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

This gives us the final expanded expression. Therefore, the product of [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex] is:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

The answer is [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex].