College

What is the product of [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex]?

A. [tex]\(-8x^2 - 6x - 36xy^2 - 27y^2\)[/tex]

B. [tex]\(-14x^2 - 36xy^2 + 27y^2\)[/tex]

C. [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

D. [tex]\(14x^2 + 36xy^2 + 27y^2\)[/tex]

Answer :

To find the product [tex]\(( -2x - 9y^2)(-4x - 3)\)[/tex], we will use the distributive property to multiply each term in the first expression by each term in the second expression. Let's break it down step by step:

1. Multiply [tex]\((-2x)\)[/tex] by each term in [tex]\((-4x - 3)\)[/tex]:

- [tex]\((-2x) \times (-4x) = 8x^2\)[/tex] (Multiplying the coefficients [tex]\(-2\)[/tex] and [tex]\(-4\)[/tex] gives [tex]\(8\)[/tex] and [tex]\(x \times x = x^2\)[/tex])
- [tex]\((-2x) \times (-3) = 6x\)[/tex] (Multiplying the coefficients [tex]\(-2\)[/tex] and [tex]\(-3\)[/tex] gives [tex]\(6\)[/tex])

2. Multiply [tex]\((-9y^2)\)[/tex] by each term in [tex]\((-4x - 3)\)[/tex]:

- [tex]\((-9y^2) \times (-4x) = 36xy^2\)[/tex] (Multiplying the coefficients [tex]\(-9\)[/tex] and [tex]\(-4\)[/tex] gives [tex]\(36\)[/tex] and [tex]\(y^2 \times x = xy^2\)[/tex])
- [tex]\((-9y^2) \times (-3) = 27y^2\)[/tex] (Multiplying the coefficients [tex]\(-9\)[/tex] and [tex]\(-3\)[/tex] gives [tex]\(27\)[/tex])

3. Add all the terms together:

- [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

The simplified expression of the product is:

[tex]\[ 8x^2 + 6x + 36xy^2 + 27y^2 \][/tex]

So, the correct answer is:

[tex]\[ 8x^2 + 6x + 36xy^2 + 27y^2 \][/tex]