High School

What is the product of [tex](2x^2 + 3x - 1)[/tex] and [tex](3x + 5)[/tex]?

A. [tex]6x^3 + 19x^2 - 12x + 5[/tex]

B. [tex]6x^3 + 9x^2 - 3x - 5[/tex]

C. [tex]6x^3 + 10x^2 + 15x - 5[/tex]

D. [tex]6x^3 + 19x^2 + 12x - 5[/tex]

Answer :

To find the product of the polynomials [tex]\((2x^2 + 3x - 1)\)[/tex] and [tex]\((3x + 5)\)[/tex], we will use the distributive property, also known as the FOIL method for binomials. Here's a detailed, step-by-step breakdown:

1. Distribute each term in the first polynomial to each term in the second polynomial:

First, distribute [tex]\(2x^2\)[/tex] to both [tex]\(3x\)[/tex] and [tex]\(5\)[/tex].
- [tex]\(2x^2 \times 3x = 6x^3\)[/tex]
- [tex]\(2x^2 \times 5 = 10x^2\)[/tex]

Next, distribute [tex]\(3x\)[/tex] to both [tex]\(3x\)[/tex] and [tex]\(5\)[/tex].
- [tex]\(3x \times 3x = 9x^2\)[/tex]
- [tex]\(3x \times 5 = 15x\)[/tex]

* Finally, distribute [tex]\(-1\)[/tex] to both [tex]\(3x\)[/tex] and [tex]\(5\)[/tex].
- [tex]\(-1 \times 3x = -3x\)[/tex]
- [tex]\(-1 \times 5 = -5\)[/tex]

2. Combine all the terms:

- Combine the like terms (the terms with the same powers of [tex]\(x\)[/tex]) obtained from the distribution:
- [tex]\(6x^3\)[/tex] from [tex]\(2x^2 \times 3x\)[/tex]
- [tex]\(10x^2 + 9x^2 = 19x^2\)[/tex] from [tex]\(2x^2 \times 5\)[/tex] and [tex]\(3x \times 3x\)[/tex]
- [tex]\(15x - 3x = 12x\)[/tex] from [tex]\(3x \times 5\)[/tex] and [tex]\(-1 \times 3x\)[/tex]
- [tex]\(-5\)[/tex] from [tex]\(-1 \times 5\)[/tex]

3. Write the final expression:

The combined expression is:
- [tex]\(6x^3 + 19x^2 + 12x - 5\)[/tex]

Thus, the product of [tex]\((2x^2 + 3x - 1)\)[/tex] and [tex]\((3x + 5)\)[/tex] is [tex]\(\boxed{6x^3 + 19x^2 + 12x - 5}\)[/tex], which corresponds to option D.