Answer :
To find the product of the expression [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex], let's break it down into simple steps:
1. Distribute the terms within the parentheses:
First, we will expand [tex]\((2x^3 + 5)(x^2 - 4x - 9)\)[/tex].
- Multiply [tex]\(2x^3\)[/tex] by each term in [tex]\((x^2 - 4x - 9)\)[/tex]:
- [tex]\(2x^3 \cdot x^2 = 2x^5\)[/tex]
- [tex]\(2x^3 \cdot (-4x) = -8x^4\)[/tex]
- [tex]\(2x^3 \cdot (-9) = -18x^3\)[/tex]
- Multiply [tex]\(5\)[/tex] by each term in [tex]\((x^2 - 4x - 9)\)[/tex]:
- [tex]\(5 \cdot x^2 = 5x^2\)[/tex]
- [tex]\(5 \cdot (-4x) = -20x\)[/tex]
- [tex]\(5 \cdot (-9) = -45\)[/tex]
Combine all these results:
[tex]\[
(2x^5) + (-8x^4) + (-18x^3) + 5x^2 + (-20x) + (-45)
\][/tex]
So, [tex]\((2x^3 + 5)(x^2 - 4x - 9)\)[/tex] simplifies to:
[tex]\[
2x^5 - 8x^4 - 18x^3 + 5x^2 - 20x - 45
\][/tex]
2. Multiply the result by [tex]\(7x^2\)[/tex]:
Now, multiply [tex]\(7x^2\)[/tex] by each term in [tex]\(2x^5 - 8x^4 - 18x^3 + 5x^2 - 20x - 45\)[/tex]:
- [tex]\(7x^2 \cdot 2x^5 = 14x^7\)[/tex]
- [tex]\(7x^2 \cdot (-8x^4) = -56x^6\)[/tex]
- [tex]\(7x^2 \cdot (-18x^3) = -126x^5\)[/tex]
- [tex]\(7x^2 \cdot 5x^2 = 35x^4\)[/tex]
- [tex]\(7x^2 \cdot (-20x) = -140x^3\)[/tex]
- [tex]\(7x^2 \cdot (-45) = -315x^2\)[/tex]
Combine these results to get the final product:
[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]
So, the product of [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex] is:
[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]
1. Distribute the terms within the parentheses:
First, we will expand [tex]\((2x^3 + 5)(x^2 - 4x - 9)\)[/tex].
- Multiply [tex]\(2x^3\)[/tex] by each term in [tex]\((x^2 - 4x - 9)\)[/tex]:
- [tex]\(2x^3 \cdot x^2 = 2x^5\)[/tex]
- [tex]\(2x^3 \cdot (-4x) = -8x^4\)[/tex]
- [tex]\(2x^3 \cdot (-9) = -18x^3\)[/tex]
- Multiply [tex]\(5\)[/tex] by each term in [tex]\((x^2 - 4x - 9)\)[/tex]:
- [tex]\(5 \cdot x^2 = 5x^2\)[/tex]
- [tex]\(5 \cdot (-4x) = -20x\)[/tex]
- [tex]\(5 \cdot (-9) = -45\)[/tex]
Combine all these results:
[tex]\[
(2x^5) + (-8x^4) + (-18x^3) + 5x^2 + (-20x) + (-45)
\][/tex]
So, [tex]\((2x^3 + 5)(x^2 - 4x - 9)\)[/tex] simplifies to:
[tex]\[
2x^5 - 8x^4 - 18x^3 + 5x^2 - 20x - 45
\][/tex]
2. Multiply the result by [tex]\(7x^2\)[/tex]:
Now, multiply [tex]\(7x^2\)[/tex] by each term in [tex]\(2x^5 - 8x^4 - 18x^3 + 5x^2 - 20x - 45\)[/tex]:
- [tex]\(7x^2 \cdot 2x^5 = 14x^7\)[/tex]
- [tex]\(7x^2 \cdot (-8x^4) = -56x^6\)[/tex]
- [tex]\(7x^2 \cdot (-18x^3) = -126x^5\)[/tex]
- [tex]\(7x^2 \cdot 5x^2 = 35x^4\)[/tex]
- [tex]\(7x^2 \cdot (-20x) = -140x^3\)[/tex]
- [tex]\(7x^2 \cdot (-45) = -315x^2\)[/tex]
Combine these results to get the final product:
[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]
So, the product of [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex] is:
[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]