College

What is the product?

\[
\left(-2x - 9y^2\right)(-4x - 3)
\]

A. \(-8x^2 - 6x - 36xy^2 - 27y^2\)

B. \(-14x^2 - 36xy^2 + 27y^2\)

C. \(8x^2 + 6x + 36xy^2 + 27y^2\)

D. \(14x^2 + 36xy^2 + 27y^2\)

Answer :

To determine the product [tex]\((\left(-2 x-9 y^2\right)(-4 x-3)\)[/tex], let's break down the multiplication step-by-step.

1. Distribute [tex]\(-2x\)[/tex]:
- Multiply [tex]\(-2x\)[/tex] by each term inside the second set of parentheses:
- [tex]\(-2x \times -4x = 8x^2\)[/tex]
- [tex]\(-2x \times -3 = 6x\)[/tex]

2. Distribute [tex]\(-9y^2\)[/tex]:
- Multiply [tex]\(-9y^2\)[/tex] by each term inside the second set of parentheses:
- [tex]\(-9y^2 \times -4x = 36xy^2\)[/tex]
- [tex]\(-9y^2 \times -3 = 27y^2\)[/tex]

3. Combine like terms:
- Combine the results from both distributions:
[tex]\[8x^2 + 6x + 36xy^2 + 27y^2\][/tex]

So, the product of the expression [tex]\(\left(-2 x-9 y^2\right)(-4 x-3)\)[/tex] is [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex].

Therefore, the correct choice from the given options is:
[tex]\[ \boxed{8x^2 + 6x + 36xy^2 + 27y^2} \][/tex]