College

What is the product?

\[ (-2x - 9y^2)(-4x - 3) \]

A. \(-8x^2 - 6x - 36xy^2 - 27y^2\)

B. \(-14x^2 - 36xy^2 + 27y^2\)

C. \(8x^2 + 6x + 36xy^2 + 27y^2\)

D. \(14x^2 + 36xy^2 + 27y^2\)

Answer :

Let's find the product of [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex] step-by-step:

1. Distribute the first term, [tex]\(-2x\)[/tex], across [tex]\((-4x - 3)\)[/tex]:
- Multiply: [tex]\(-2x \times -4x = 8x^2\)[/tex]
- Multiply: [tex]\(-2x \times -3 = 6x\)[/tex]

2. Distribute the second term, [tex]\(-9y^2\)[/tex], across [tex]\((-4x - 3)\)[/tex]:
- Multiply: [tex]\(-9y^2 \times -4x = 36xy^2\)[/tex]
- Multiply: [tex]\(-9y^2 \times -3 = 27y^2\)[/tex]

3. Combine all the results:
- From the first distribution, we have: [tex]\(8x^2 + 6x\)[/tex]
- From the second distribution, we have: [tex]\(36xy^2 + 27y^2\)[/tex]

Putting all these terms together, the complete product is:
[tex]\[ 8x^2 + 6x + 36xy^2 + 27y^2 \][/tex]

This corresponds to the choice:
[tex]\[ 8x^2 + 6x + 36xy^2 + 27y^2 \][/tex]

So the correct answer is the option: [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex].