Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product?

\[
(-2x - 9y^2)(-4x - 3)
\]

A. \(-8x^2 - 6x - 36xy^2 - 27y^2\)

B. \(-14x^2 - 36xy^2 + 27y^2\)

C. \(8x^2 + 6x + 36xy^2 + 27y^2\)

D. \(14x^2 + 36xy^2 + 27y^2\)

Answer :

To find the product of the two expressions [tex]\((-2x - 9y^2)\)[/tex] and [tex]\((-4x - 3)\)[/tex], we will multiply each term in the first expression by each term in the second expression. We'll then simplify by combining like terms.

Here's a step-by-step breakdown:

1. Distribute [tex]\(-2x\)[/tex]:
- Multiply [tex]\(-2x\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-2x) \cdot (-4x) = 8x^2
\][/tex]
- Multiply [tex]\(-2x\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-2x) \cdot (-3) = 6x
\][/tex]

2. Distribute [tex]\(-9y^2\)[/tex]:
- Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-9y^2) \cdot (-4x) = 36xy^2
\][/tex]
- Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-9y^2) \cdot (-3) = 27y^2
\][/tex]

3. Combine all the terms:
- Now, let's bring all these results together:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

The fully expanded and simplified product of [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex] is:
[tex]\[
8x^2 + 36xy^2 + 6x + 27y^2
\][/tex]

So, the answer to the question is [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex].