Answer :
To find the pressure of the gas, we use the ideal gas law:
$$
P = \frac{nRT}{V}
$$
where
- $n = 0.540 \text{ mol}$ (number of moles),
- $R = 8.314 \text{ kPa·L/(mol·K)}$ (gas constant),
- $T = 223 \text{ K}$ (temperature), and
- $V = 35.5 \text{ L}$ (volume).
**Step 1. Calculate the Numerator ($nRT$):**
First, compute the product $nRT$:
$$
nRT = 0.540 \times 8.314 \times 223
$$
Multiplying these values gives approximately:
$$
nRT \approx 1001.17 \text{ kPa·L}
$$
**Step 2. Calculate the Pressure ($P$):**
Now substitute into the ideal gas law:
$$
P = \frac{nRT}{V} = \frac{1001.17}{35.5}
$$
Performing the division:
$$
P \approx 28.20 \text{ kPa}
$$
Thus, the pressure of the gas is approximately $28.2$ kPa.
$$
P = \frac{nRT}{V}
$$
where
- $n = 0.540 \text{ mol}$ (number of moles),
- $R = 8.314 \text{ kPa·L/(mol·K)}$ (gas constant),
- $T = 223 \text{ K}$ (temperature), and
- $V = 35.5 \text{ L}$ (volume).
**Step 1. Calculate the Numerator ($nRT$):**
First, compute the product $nRT$:
$$
nRT = 0.540 \times 8.314 \times 223
$$
Multiplying these values gives approximately:
$$
nRT \approx 1001.17 \text{ kPa·L}
$$
**Step 2. Calculate the Pressure ($P$):**
Now substitute into the ideal gas law:
$$
P = \frac{nRT}{V} = \frac{1001.17}{35.5}
$$
Performing the division:
$$
P \approx 28.20 \text{ kPa}
$$
Thus, the pressure of the gas is approximately $28.2$ kPa.