Answer :
To find the potential energy, we use the formula
[tex]$$
PE = m \cdot g \cdot h,
$$[/tex]
where
[tex]\( m \)[/tex] is the mass,
[tex]\( g \)[/tex] is the acceleration due to gravity, and
[tex]\( h \)[/tex] is the height.
Given:
[tex]\( m = 25 \)[/tex] kg,
[tex]\( g = 9.8 \)[/tex] m/s[tex]\(^2\)[/tex],
[tex]\( h = 3 \)[/tex] m.
Substitute the values into the formula:
[tex]$$
PE = 25 \times 9.8 \times 3.
$$[/tex]
First, multiply [tex]\( 25 \)[/tex] and [tex]\( 9.8 \)[/tex]:
[tex]$$
25 \times 9.8 = 245.
$$[/tex]
Then, multiply by [tex]\( 3 \)[/tex]:
[tex]$$
245 \times 3 = 735.
$$[/tex]
Thus, the potential energy of the bicycle is
[tex]$$
PE = 735 \text{ J}.
$$[/tex]
[tex]$$
PE = m \cdot g \cdot h,
$$[/tex]
where
[tex]\( m \)[/tex] is the mass,
[tex]\( g \)[/tex] is the acceleration due to gravity, and
[tex]\( h \)[/tex] is the height.
Given:
[tex]\( m = 25 \)[/tex] kg,
[tex]\( g = 9.8 \)[/tex] m/s[tex]\(^2\)[/tex],
[tex]\( h = 3 \)[/tex] m.
Substitute the values into the formula:
[tex]$$
PE = 25 \times 9.8 \times 3.
$$[/tex]
First, multiply [tex]\( 25 \)[/tex] and [tex]\( 9.8 \)[/tex]:
[tex]$$
25 \times 9.8 = 245.
$$[/tex]
Then, multiply by [tex]\( 3 \)[/tex]:
[tex]$$
245 \times 3 = 735.
$$[/tex]
Thus, the potential energy of the bicycle is
[tex]$$
PE = 735 \text{ J}.
$$[/tex]