Answer :
To find the potential energy, we use the formula:
[tex]$$
PE = mgh,
$$[/tex]
where:
- [tex]$m$[/tex] is the mass of the bicycle,
- [tex]$g$[/tex] is the acceleration due to gravity,
- [tex]$h$[/tex] is the height of the hill.
The given values are:
- [tex]$m = 25 \text{ kg}$[/tex],
- [tex]$g = 9.8 \text{ m/s}^2$[/tex],
- [tex]$h = 3 \text{ m}$[/tex].
Substitute these values into the formula:
[tex]$$
PE = 25 \times 9.8 \times 3.
$$[/tex]
Calculating the product:
[tex]$$
PE = 25 \times 9.8 \times 3 = 735 \text{ J}.
$$[/tex]
Thus, the potential energy of the bicycle at the top of the hill is [tex]$\boxed{735 \text{ J}}$[/tex].
[tex]$$
PE = mgh,
$$[/tex]
where:
- [tex]$m$[/tex] is the mass of the bicycle,
- [tex]$g$[/tex] is the acceleration due to gravity,
- [tex]$h$[/tex] is the height of the hill.
The given values are:
- [tex]$m = 25 \text{ kg}$[/tex],
- [tex]$g = 9.8 \text{ m/s}^2$[/tex],
- [tex]$h = 3 \text{ m}$[/tex].
Substitute these values into the formula:
[tex]$$
PE = 25 \times 9.8 \times 3.
$$[/tex]
Calculating the product:
[tex]$$
PE = 25 \times 9.8 \times 3 = 735 \text{ J}.
$$[/tex]
Thus, the potential energy of the bicycle at the top of the hill is [tex]$\boxed{735 \text{ J}}$[/tex].