Answer :
To find the potential energy, we use the formula
[tex]$$
PE = mgh,
$$[/tex]
where:
- [tex]$m$[/tex] is the mass,
- [tex]$g$[/tex] is the acceleration due to gravity,
- [tex]$h$[/tex] is the height.
Given:
- [tex]$m = 25\ \text{kg}$[/tex],
- [tex]$g = 9.8\ \text{m/s}^2$[/tex],
- [tex]$h = 3\ \text{m}$[/tex],
we substitute these values into the formula:
[tex]$$
PE = 25 \times 9.8 \times 3.
$$[/tex]
Multiplying step by step:
1. Calculate the product of the mass and gravitational acceleration:
[tex]$$
25 \times 9.8 = 245.
$$[/tex]
2. Multiply the result by the height:
[tex]$$
245 \times 3 = 735.
$$[/tex]
Thus, the potential energy is
[tex]$$
PE = 735\ \text{Joules}.
$$[/tex]
Therefore, the potential energy of the bicycle is 735 J.
[tex]$$
PE = mgh,
$$[/tex]
where:
- [tex]$m$[/tex] is the mass,
- [tex]$g$[/tex] is the acceleration due to gravity,
- [tex]$h$[/tex] is the height.
Given:
- [tex]$m = 25\ \text{kg}$[/tex],
- [tex]$g = 9.8\ \text{m/s}^2$[/tex],
- [tex]$h = 3\ \text{m}$[/tex],
we substitute these values into the formula:
[tex]$$
PE = 25 \times 9.8 \times 3.
$$[/tex]
Multiplying step by step:
1. Calculate the product of the mass and gravitational acceleration:
[tex]$$
25 \times 9.8 = 245.
$$[/tex]
2. Multiply the result by the height:
[tex]$$
245 \times 3 = 735.
$$[/tex]
Thus, the potential energy is
[tex]$$
PE = 735\ \text{Joules}.
$$[/tex]
Therefore, the potential energy of the bicycle is 735 J.