Answer :
To calculate the gravitational potential energy of an object at a height, we use the formula
[tex]$$
PE = m \cdot g \cdot h,
$$[/tex]
where
[tex]\( m \)[/tex] is the mass in kilograms,
[tex]\( g \)[/tex] is the gravitational acceleration (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex]), and
[tex]\( h \)[/tex] is the height in meters.
Given:
[tex]\( m = 25 \, \text{kg} \)[/tex]
[tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex]
[tex]\( h = 3 \, \text{m} \)[/tex]
Step 1. Calculate the intermediate product [tex]\( g \cdot h \)[/tex]:
[tex]$$
g \cdot h = 9.8 \times 3 = 29.4.
$$[/tex]
Step 2. Now substitute these values into the potential energy formula:
[tex]$$
PE = 25 \cdot 29.4.
$$[/tex]
Step 3. Perform the multiplication:
[tex]$$
PE = 735 \, \text{Joules}.
$$[/tex]
Thus, the potential energy of the bicycle at the top of the hill is
[tex]$$
\boxed{735 \, \text{J}}.
$$[/tex]
[tex]$$
PE = m \cdot g \cdot h,
$$[/tex]
where
[tex]\( m \)[/tex] is the mass in kilograms,
[tex]\( g \)[/tex] is the gravitational acceleration (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex]), and
[tex]\( h \)[/tex] is the height in meters.
Given:
[tex]\( m = 25 \, \text{kg} \)[/tex]
[tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex]
[tex]\( h = 3 \, \text{m} \)[/tex]
Step 1. Calculate the intermediate product [tex]\( g \cdot h \)[/tex]:
[tex]$$
g \cdot h = 9.8 \times 3 = 29.4.
$$[/tex]
Step 2. Now substitute these values into the potential energy formula:
[tex]$$
PE = 25 \cdot 29.4.
$$[/tex]
Step 3. Perform the multiplication:
[tex]$$
PE = 735 \, \text{Joules}.
$$[/tex]
Thus, the potential energy of the bicycle at the top of the hill is
[tex]$$
\boxed{735 \, \text{J}}.
$$[/tex]