Answer :
To find the potential energy of the bicycle at the top of the hill, we use the formula:
[tex]\[ PE = m \times g \times h \][/tex]
Where:
- [tex]\( PE \)[/tex] is the potential energy,
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex] on Earth),
- [tex]\( h \)[/tex] is the height above the ground (in meters).
Given:
- The mass [tex]\( m \)[/tex] of the bicycle is [tex]\( 25 \, \text{kg} \)[/tex],
- The height [tex]\( h \)[/tex] of the hill is [tex]\( 3 \, \text{m} \)[/tex],
- The acceleration due to gravity [tex]\( g \)[/tex] is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
Let's plug these values into the formula:
[tex]\[ PE = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
Now, calculate the potential energy:
1. First, multiply the mass and the gravity: [tex]\( 25 \times 9.8 = 245 \)[/tex].
2. Then multiply the result by the height: [tex]\( 245 \times 3 = 735 \)[/tex].
So, the potential energy of the bicycle at the top of the hill is [tex]\( 735 \, \text{Joules} \)[/tex].
Therefore, the correct answer is [tex]\( 735 \, \text{J} \)[/tex].
[tex]\[ PE = m \times g \times h \][/tex]
Where:
- [tex]\( PE \)[/tex] is the potential energy,
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex] on Earth),
- [tex]\( h \)[/tex] is the height above the ground (in meters).
Given:
- The mass [tex]\( m \)[/tex] of the bicycle is [tex]\( 25 \, \text{kg} \)[/tex],
- The height [tex]\( h \)[/tex] of the hill is [tex]\( 3 \, \text{m} \)[/tex],
- The acceleration due to gravity [tex]\( g \)[/tex] is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
Let's plug these values into the formula:
[tex]\[ PE = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
Now, calculate the potential energy:
1. First, multiply the mass and the gravity: [tex]\( 25 \times 9.8 = 245 \)[/tex].
2. Then multiply the result by the height: [tex]\( 245 \times 3 = 735 \)[/tex].
So, the potential energy of the bicycle at the top of the hill is [tex]\( 735 \, \text{Joules} \)[/tex].
Therefore, the correct answer is [tex]\( 735 \, \text{J} \)[/tex].