Answer :
To find the potential energy of a bicycle at the top of a hill, we use the formula for gravitational potential energy:
[tex]\[ PE = m \times g \times h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex]),
- [tex]\( h \)[/tex] is the height of the object above the ground (in meters).
Let's go through the steps:
1. Identify the mass ([tex]\( m \)[/tex]): In this problem, the mass of the bicycle is [tex]\( 25 \, \text{kg} \)[/tex].
2. Identify the height ([tex]\( h \)[/tex]): The hill's height is [tex]\( 3 \, \text{m} \)[/tex].
3. Use the standard gravitational acceleration ([tex]\( g \)[/tex]): We use [tex]\( 9.8 \, \text{m/s}^2 \)[/tex] as the acceleration due to gravity.
4. Calculate the potential energy:
[tex]\[ PE = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
[tex]\[ PE = 735 \, \text{J} \][/tex]
Therefore, the potential energy of the bicycle at the top of the hill is [tex]\( 735 \, \text{J} \)[/tex].
[tex]\[ PE = m \times g \times h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex]),
- [tex]\( h \)[/tex] is the height of the object above the ground (in meters).
Let's go through the steps:
1. Identify the mass ([tex]\( m \)[/tex]): In this problem, the mass of the bicycle is [tex]\( 25 \, \text{kg} \)[/tex].
2. Identify the height ([tex]\( h \)[/tex]): The hill's height is [tex]\( 3 \, \text{m} \)[/tex].
3. Use the standard gravitational acceleration ([tex]\( g \)[/tex]): We use [tex]\( 9.8 \, \text{m/s}^2 \)[/tex] as the acceleration due to gravity.
4. Calculate the potential energy:
[tex]\[ PE = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
[tex]\[ PE = 735 \, \text{J} \][/tex]
Therefore, the potential energy of the bicycle at the top of the hill is [tex]\( 735 \, \text{J} \)[/tex].