Answer :
To find the potential energy of the bicycle resting at the top of the hill, we can use the formula for potential energy:
[tex]\[ \text{Potential Energy} (PE) = m \times g \times h \][/tex]
Where:
- [tex]\( m \)[/tex] is the mass of the object in kilograms (kg),
- [tex]\( g \)[/tex] is the acceleration due to gravity, which is approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex] on Earth,
- [tex]\( h \)[/tex] is the height in meters (m).
Given values:
- The mass of the bicycle ([tex]\( m \)[/tex]) is [tex]\( 25 \, \text{kg} \)[/tex],
- The height of the hill ([tex]\( h \)[/tex]) is [tex]\( 3 \, \text{m} \)[/tex],
- Gravity ([tex]\( g \)[/tex]) is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
Let's plug in these values into the formula:
[tex]\[ PE = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
[tex]\[ PE = 735 \, \text{J} \][/tex]
So, the potential energy of the bicycle at the top of the hill is [tex]\( 735 \, \text{Joules} \)[/tex]. Therefore, the correct answer is 735 J.
[tex]\[ \text{Potential Energy} (PE) = m \times g \times h \][/tex]
Where:
- [tex]\( m \)[/tex] is the mass of the object in kilograms (kg),
- [tex]\( g \)[/tex] is the acceleration due to gravity, which is approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex] on Earth,
- [tex]\( h \)[/tex] is the height in meters (m).
Given values:
- The mass of the bicycle ([tex]\( m \)[/tex]) is [tex]\( 25 \, \text{kg} \)[/tex],
- The height of the hill ([tex]\( h \)[/tex]) is [tex]\( 3 \, \text{m} \)[/tex],
- Gravity ([tex]\( g \)[/tex]) is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
Let's plug in these values into the formula:
[tex]\[ PE = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
[tex]\[ PE = 735 \, \text{J} \][/tex]
So, the potential energy of the bicycle at the top of the hill is [tex]\( 735 \, \text{Joules} \)[/tex]. Therefore, the correct answer is 735 J.