Answer :
To determine the potential energy of a 25 kg bicycle at the top of a 3-meter high hill, we can use the formula for gravitational potential energy:
[tex]\[ \text{Potential Energy (PE)} = m \times g \times h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex] on Earth),
- [tex]\( h \)[/tex] is the height (in meters).
Let's apply the values:
1. [tex]\( m = 25 \, \text{kg} \)[/tex]
2. [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex]
3. [tex]\( h = 3 \, \text{m} \)[/tex]
Substitute these values into the formula:
[tex]\[ \text{PE} = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
Now, let's calculate:
[tex]\[ \text{PE} = 25 \times 9.8 \times 3 = 735 \, \text{Joules} \][/tex]
Therefore, the potential energy of the bicycle at the top of the hill is 735 Joules.
[tex]\[ \text{Potential Energy (PE)} = m \times g \times h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex] on Earth),
- [tex]\( h \)[/tex] is the height (in meters).
Let's apply the values:
1. [tex]\( m = 25 \, \text{kg} \)[/tex]
2. [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex]
3. [tex]\( h = 3 \, \text{m} \)[/tex]
Substitute these values into the formula:
[tex]\[ \text{PE} = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
Now, let's calculate:
[tex]\[ \text{PE} = 25 \times 9.8 \times 3 = 735 \, \text{Joules} \][/tex]
Therefore, the potential energy of the bicycle at the top of the hill is 735 Joules.